131 research outputs found

    Boxicity and topological invariants

    Full text link
    The boxicity of a graph G=(V,E)G=(V,E) is the smallest integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1EkE=E_1 \cap \cdots \cap E_k. In the first part of this note, we prove that every graph on mm edges has boxicity O(mlogm)O(\sqrt{m \log m}), which is asymptotically best possible. We use this result to study the connection between the boxicity of graphs and their Colin de Verdi\`ere invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph GG, the boxicity of GG is at most the Colin de Verdi\`ere invariant of GG, denoted by μ(G)\mu(G). We observe that every graph GG has boxicity O(μ(G)4(logμ(G))2)O(\mu(G)^4(\log \mu(G))^2), while there are graphs GG with boxicity Ω(μ(G)logμ(G))\Omega(\mu(G)\sqrt{\log \mu(G)}). In the second part of this note, we focus on graphs embeddable on a surface of Euler genus gg. We prove that these graphs have boxicity O(glogg)O(\sqrt{g}\log g), while some of these graphs have boxicity Ω(glogg)\Omega(\sqrt{g \log g}). This improves the previously best known upper and lower bounds. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces.Comment: 6 page

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio

    Polynomial expansion and sublinear separators

    Full text link
    Let C\mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed 0<δ10<\delta\le 1, every nn-vertex graph of C\mathcal{C} has a balanced separator of order O(n1δ)O(n^{1-\delta}), then any depth-kk minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most kk) of a graph in C\mathcal{C} has average degree O((k polylog k)1/δ)O\big((k \text{ polylog }k)^{1/\delta}\big). This confirms a conjecture of Dvo\v{r}\'ak and Norin.Comment: 6 pages, no figur

    Equitable partition of graphs into induced forests

    Full text link
    An equitable partition of a graph GG is a partition of the vertex-set of GG such that the sizes of any two parts differ by at most one. We show that every graph with an acyclic coloring with at most kk colors can be equitably partitioned into k1k-1 induced forests. We also prove that for any integers d1d\ge 1 and k3d1k\ge 3^{d-1}, any dd-degenerate graph can be equitably partitioned into kk induced forests. Each of these results implies the existence of a constant cc such that for any kck \ge c, any planar graph has an equitable partition into kk induced forests. This was conjectured by Wu, Zhang, and Li in 2013.Comment: 4 pages, final versio

    Small feedback vertex sets in planar digraphs

    Full text link
    Let GG be a directed planar graph on nn vertices, with no directed cycle of length less than g4g\ge 4. We prove that GG contains a set XX of vertices such that GXG-X has no directed cycle, and X5n59|X|\le \tfrac{5n-5}9 if g=4g=4, X2n54|X|\le \tfrac{2n-5}4 if g=5g=5, and X2n6g|X|\le \tfrac{2n-6}{g} if g6g\ge 6. This improves recent results of Golowich and Rolnick.Comment: 5 pages, 1 figure - v3 final versio

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio

    Distributed Coloring of Graphs with an Optimal Number of Colors

    Get PDF
    This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most of the work on distributed vertex coloring so far has focused on coloring graphs of maximum degree Delta with at most Delta+1 colors (or Delta colors when some simple obstructions are forbidden). When Delta is sufficiently large and c >= Delta-k_Delta+1, for some integer k_Delta ~~ sqrt{Delta}-2, we give a distributed algorithm that given a c-colorable graph G of maximum degree Delta, finds a c-coloring of G in min{O((log Delta)^{13/12}log n), 2^{O(log Delta+sqrt{log log n})}} rounds, with high probability. The lower bound Delta-k_Delta+1 is best possible in the sense that for infinitely many values of Delta, we prove that when chi(G) = Delta-k_Delta deciding whether chi(G) <= c is in P, while Embden-Weinert et al. proved that for c <= Delta-k_Delta-1, the same problem is NP-complete. Note that the sequential and distributed thresholds differ by one. Our first result covers the case where the chromatic number of the graph ranges between Delta-sqrt{Delta} and Delta+1. Our second result covers a larger range, but gives a weaker bound on the number of colors: For any sufficiently large Delta, and Omega(log Delta) 0, with a randomized algorithm running in O(log n/log log n) rounds with high probability

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a r\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio
    corecore